Offenlegungsschrift

(21) Aktenzeichen: 10 2004 039 065.7
(22) Anmeldetag: 12.08.2004
(43) Offenlegungstag: 23.02.2006

(51) Int Cl.:
C07D 249/04 (2006.01)
A61K 31/4192 (2006.01)
A61P 13/02 (2006.01)
A61P 9/00 (2006.01)
A61P 25/00 (2006.01)

(71) Anmelder:
Friedrich-Alexander-Universität
Erlangen-Nürnberg, 91054 Erlangen, DE

(72) Erfinder:
Gmeiner, Peter, Prof., Dr.rer.nat., 91054 Buckenhof, DE; Hübner, Harald, Dr.rer.nat., 91336 Heroldsbach, DE; Loaiza, Mariel Pilar Rodríguez, 91054 Erlangen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: 1,2,3-Triazolcarboxamide als Dopamin- und Adrenorezeptoraffine Wirkstoffe

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Adreno- und Dopaminrezeptor-aktive Carboxamid-substituierte Triazol-Derivate der allgemeinen Formel I
DE 10 2004 039 065 A1 2006.02.23

Beschreibung

Stand der Technik

Aufgabenstellung

für den adrenergen α1-Rezeptor sowie hohe Affinitäten zu verschiedenen Dopaminrezeptoren.

[0008] Gegenstand dieser Erfindung sind Verbindungen der allgemeinen Formel I,

\[
\text{Formel I}
\]

\[
\begin{align*}
\text{R1} & \text{ ist Wasserstoff, Alkyl, Phenyl oder Phenylalkyl;} \\
n & \text{ kann den Wert 1, 2, 3 oder 4 haben;} \\
\text{R2, R3, R4, R5 und R6 sind jeweils unabhängig voneinander ausgewählt aus der Gruppe Wasserstoff, Hydroxy, Alkyl, Alkylalkoxy, Alkylthio, Alkylalkynyl, Phenyl, Phenoxy, Phenylalkyl, Halogen, Trifluormethyl, Alkylcarbonyl, Phenylcarbonyl, Phenylalkylcarbonyl, Alkoxy(carbonyl), Phenylalkylcarbonyl, Phenylalkylcarbonyl, Alkoxy(carbonyl), Cyan, Nitro, Amino, Carboxy, Sulf, Sulfamoyl, Sulfonamino, Alkylaminosulfonfyl und Alkylsulfonamino, wobei zwei benachbarte Reste R2, R3, R4, R5 und R6 gemeinsam mit den C-Atomen des Phenylrings an die sie gebunden sind, einen sauerstoffhaltigen 5-, 6- oder 7-gliedrigen Ring bilden können;} \\
\text{R7 ist Wasserstoff, Alkyl oder Phenylalkyl;} \\
\text{R8 ist Wasserstoff oder Alkyl;} \\
\text{R9, R10, R11, R12 und R13 sind jeweils unabhängig voneinander ausgewählt aus der Gruppe Wasserstoff, Hydroxy, Alkyl, Alkylalkoxy, Alkylthio, Alkylalkynyl, Phenyl, Phenoxy, Phenylalkyl, Halogen, Trifluormethyl, Alkylcarbonyl, Phenylcarbonyl, Phenylalkylcarbonyl, Alkoxy(carbonyl), Phenylalkylcarbonyl, Phenylalkylcarbonyl, Cyan, Nitro, Amino, Carboxy, Sulf, Sulfamoyl, Sulfonamino, Alkylaminosulfonfyl und Alkylsulfonamino, in Form der freien Base, deren physikalisch akzeptable Salze sowie möglicher Enantioforme und Diastereomere.}
\end{align*}
\]

[0009] In einer bevorzugten Ausführungsform der Erfindung ist der Substituent R1 des Triazolrings in den erfindungsgemäßen Verbindungen der Formel I ausgewählt aus Wasserstoff, unsubstituierten C1-C6 Alkyl und unsubstituiertem oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiertem Phenyl.

[0011] R2, R3, R4, R5 und R6 sind in den erfindungsgemäßen Verbindungen der allgemeinen Formel I bevorzugt und jeweils unabhängig voneinander ausgewählt aus der Gruppe Wasserstoff, Hydroxy, Fluor, Chlor, Brom, Trifluormethyl, Cyan, Amin, Carboxy, Sulf, Sulfamoyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkoxy, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkynyl, unsubstituiertes oder mit Hydroxy substituiertes C2-C6 Alkyl, unsubstituiertes oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiertes Phenyl, Benzyl, unsubstituiertes oder mit Fluor, Chlor oder Brom und/oder mit einem oder mehreren Methoxygruppen substituiertes Phenoxymethyl, -C(O)-C1-C6 Alkyl, wobei das Alkyl unsubstituiert ist oder mit Hydroxy substituiert ist, -C(O)-Phenyl, wobei
das Phenyl unsubstituiert oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiert ist, C1-C6 Alkylxocarbonyl, wobei das Alkyl unsubstituiert oder mit Hydroxy substituiert ist, Benzylxocarbonyl, C1-6 Alkylaminosulfonyl, insbesondere Methylanin sulfonyl und C1-6 Alkylsulfonylvamino, insbesondere Methansulfonylvamino, oder zwei benachbarte Reste R2, R3, R4, R5 und R6 bilden gemeinsam mit den C-Atomen des Phenyllings, an die sie gebunden sind, einen sauerstoffhaltigen 5-, 6- oder 7-gliedrigen Ring.

[0012] In einer bevorzugten Ausführungsform der Erfindung ist R7 in den erfindungsgemäßen Verbindungen der Formel I ausgewählt aus Wasserstoff oder aus unsubstituiertem C1-C6 Alkyl.

[0013] R9, R10, R11, R12 und R13 sind in den erfindungsgemäßen Verbindungen der allgemeinen Formel I bevorzugt und jeweils unabhängig voneinander ausgewählt aus der Gruppe Wasserstoff, Hydroxy, Fluor, Chlor, Brom, Trifluormethyl, Cyano, Amino, Carboxy, Sulfon, Sulfamoyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkylxocarbonyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkylthio, unsubstituiertes C2-C6 Alkynyl, unsubstituiertes oder mit Hydroxy, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiertes Phenyl, Benzylxocarbonyl, -C(O)-C1-C6 Alkyl, wobei das Alkyl unsubstituiert oder mit Hydroxy substituiert ist, -C(O)-Phenyl, wobei das Phenyl unsubstituiert oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiertes Phenoxyl, Benzylxocarbonyl, -C(O)-C1-C6 Alkyl, wobei das Alkyl unsubstituiert oder mit Hydroxy substituiert ist, Benzylxocarbonyl, C1-6 Alkylaminosulfonyl, insbesondere Methylanin sulfonyl und C1-6 Alkylsulfonylvamino, insbesondere Methansulfonylvamino.

[0014] Eine bevorzugte Ausführungsform der Erfindung betrifft Verbindungen mit der Formel II

\[
\begin{array}{c}
\text{R1} \\
\text{R2} \\
\text{H} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6}
\end{array}
\]

in der bedeuten:
R1 ist Wasserstoff, Alkyl, Phenyl oder Phenylalkyl;
n kann den Wert 1, 2, 3 oder 4 haben;
R2, R3, R4, R5 und R6 sind jeweils unabhängig voneinander ausgewählt aus der Gruppe Wasserstoff, Hydroxyl, Alkyl, Alkoxyl, Alkylthio, Alkenyl, Alkynyl, Phenyl, Phenoxyl, Phenylalkyl, Halogen, Trifluormethyl, Alkylxocarbonyl, Phenylxocarbonyl, Phenyalkylxocarbonyl, Alkoxyxocarbonyl, Phenylalkoxyxocarbonyl, Cyano, Nitro, Amino, Carboxy, Sulfon, Sulfamoyl, Sulfonylvamino, Alkylaminosulfonyl und Alkylsulfonylvamino, wobei zwei benachbarte Reste R2, R3, R4, R5 und R6 gemeinsam mit den C-Atomen des Phenyllings an die sie gebunden sind, einen sauerstoffhaltigen 5-, 6- oder 7-gliedrigen Ring bilden können;
In einer bevorzugten Ausführungsform der Erfindung ist der Substituent R1 des Triazolringes in den erfindungsgemäßen Verbindungen der Formel II ausgewählt aus Wasserstoff, unsubstituiertes C1-C6 Alkyl und unsubstituiertes oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiertes Phenyl.

[0015] In einer besonders bevorzugten Ausführungsform der Erfindung ist der Substituent R1 des Triazolringes in den erfindungsgemäßen Verbindungen der Formel II unsubstituiertes C1-C6 Alkyl, ganz besonders bevorzugt Methyl und n-Propyl.

[0016] Der Wert für n ist in den erfindungsgemäßen Verbindungen der allgemeinen Formel II bevorzugt 2, 3 oder 4.
In einer besonders bevorzugten Ausführungsform der Erfindung ist der Wert für \(n \) in einer erfindungsgemäßen Verbindung der Formel II gleich 3 oder 4.

In einer Ausführungsform der Erfindung sind die Substituenten R2, R3, R4, R5 und R6 in den erfindungsgemäßen Verbindungen der Formel II bevorzugt und jeweils unabhängig voneinander ausgewählt aus der Gruppe Wasserstoff, Hydroxy, Fluor, Chlor, Brom, Trifluormethyl, Cyano, Amino, Carboxy, Sulfon, Sulfamoyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkyloxy, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkylthio, unsubstituiertes C2-C6 Alkyl, unsubstituiertes oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiertes Phenyl, Benzyl, unsubstituiertes oder mit Fluor, Chlor oder Brom und/oder mit einem oder mehreren Methoxygruppen substituiertes Phenoxy, Benzylthio, -C(O)-C1-C6 Alkyl, wobei das Alkyl unsubstituiert oder mit Hydroxy substituiert ist, -C(O)-Phenyl, wobei das Phenyl unsubstituiert oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiert ist, C1-C6 Alkoxykarbonyl, wobei das Alkyl unsubstituiert oder mit Hydroxy substituiert ist, Benzylthio, C1-6 Alkylaminosulfon, insbesondere Methyaminosulfonylethyl und C1-6 Alkylsulfonylethyl, insbesondere Methansulfonylethyl, oder zwei benachbarte Reste R2, R3, R4, R5 und R6 bilden gemeinsam mit den C-Atomen des Phenylgtrings an die sie gebunden sind, einen sauerstoffhaltigen 5-, 6- oder 7-gliedrigen Ring.

In einer weiteren bevorzugten Ausführungsform steht wenigstens einer der beiden Reste R2 und R3 für einen von Wasserstoff abweichenden Substituenten, insbesondere für Halogenen oder C1-C6 Alkoxy, oder zwei benachbarte Reste R2 und R3 bilden gemeinsam mit den C-Atomen des Phenylringes an die sie gebunden sind, einen sauerstoffhaltigen 5-, 6- oder 7-gliedrigen Ring während die Reste R4, R5 und R6 in den erfindungsgemäßen Verbindungen jeweils für Wasserstoff stehen.

In einer anderen bevorzugten Ausführungsform der Erfindung ist einer der beiden Substituenten R2 oder R3 in den Verbindungen der allgemeinen Formel II eine C1-6 Alkoxygruppe, insbesondere Methoxy, oder ein Halogen, insbesondere Fluor oder Chlor, besonders bevorzugt sind R2 und R3 beide Chlor, ganz besonders bevorzugt ist R2 gleich Methoxy.

In einer bevorzugten Ausführungsform der Erfindung sind die Substituenten R9, R10, R11, R12 und R13 in den erfindungsgemäßen Verbindungen der Formel II jeweils unabhängig voneinander ausgewählt aus der Gruppe Wasserstoff, Hydroxy, Fluor, Chlor, Brom, Trifluormethyl, Cyano, Amino, Carboxy, Sulfon, Sulfamoyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkyl, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkoxy, unsubstituiertes oder mit Hydroxy substituiertes C1-C6 Alkylthio, unsubstituiertes C2-C6 Alkyl, unsubstituiertes oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiertes Phenyl, Benzyl, unsubstituiertes oder mit Fluor, Chlor oder Brom und/oder mit einem oder mehreren Methoxygruppen substituiertes Phenoxy, Benzylthio, -C(O)-C1-C6 Alkyl, wobei das Alkyl unsubstituiert oder mit Hydroxy substituiert ist, -C(O)-Phenyl, wobei das Phenyl unsubstituiert oder mit Fluor, Chlor oder Brom und/oder mit einer oder mehreren Methoxygruppen substituiert ist, C1-C6 Alkoxykarbonyl, wobei das Alkyl unsubstituiert oder mit Hydroxy substituiert ist, Benzylthio, C1-6 Alkylaminosulfon, insbesondere Methylaminosulfonylethyl und C1-6 Alkylsulfonylethyl, insbesondere Methansulfonylethyl.

In einer weiteren bevorzugten Ausführungsform steht für einen der beiden Reste R9 und R11 ein von Wasserstoff abweichender Substituenten, insbesondere Halogenen oder C1-C6 Alkoxy, besonders bevorzugt Brom oder Methoxy, während die Reste R10, R12 und R13 in den erfindungsgemäßen Verbindungen jeweils für Wasserstoff stehen.

Dem Fachmann ist ferner klar, dass je nach Wahl der Substituenten geometrische Isomere und/oder optisch aktive Verbindungen entstehen können. In diesem Fall sind sowohl die Isomere, Racemate als auch die jeweiligen reinen enantiomeren bzw. gegebenenfalls diastereomeren Formen Gegenstand der vorliegenden Erfindung.

Die in der Beschreibung und in den anliegenden Patentansprüchen genannten Substituenten umfassen insbesondere die nachfolgend erläuterten Gruppen.

"Alkyl" kann eine verzweigte oder unverzweigte Alkylgruppe sein, die vorzugsweise 1 bis 10 C-Atome, besonders bevorzugt 1 bis 6 C-Atome ("C1-C6 Alkyl") und ganz besonders bevorzugt 1, 2 oder 3 C-Atome auf-

[0035] „Phenoxy“ ist die Gruppe -O-Phenyl, worin Phenyl die Bedeutung hat, wie weiter vorstehend definiert.

[0040] „Halogen“ umfasst Fluor, Chlor, Brom und Iod, und ist bevorzugt Fluor, Chlor oder Brom.

[0042] „Sulfonlamino“ umfasst die Gruppe -NH-SO2H.

[0044] Die folgenden Verbindungen stellen konkrete Ausführungsformen der erfundungsgemäßen Verbindungen dar:

(B1): N-[2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl]-1-benzyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B2): N-[2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl]-1-benzyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B3): N-[3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl]-1-benzyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B4): N-[3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl]-1-benzyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B5): N-[4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl]-1-benzyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B6): N-[4-(2-Methoxyphenyl)piperazin-1-yl)butyl]-1-benzyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B7): N-[5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl]-1-benzyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B8): N-[5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl]-1-benzyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B9): N-[2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl]-1-benzyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B10): N-[2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl]-1-benzyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B11): N-[3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl]-1-benzyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B12): N-[3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl]-1-benzyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B13): N-[4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl]-1-benzyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B14): N-[4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl]-1-benzyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B15): N-[5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl]-1-benzyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B16): N-[5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl]-1-benzyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B17): N-[2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl]-1-(2-brombenzyl)methyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B18): N-[2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl]-1-(2-brombenzyl)methyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B19): N-[3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl]-1-(2-brombenzyl)methyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B20): N-[3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl]-1-(2-brombenzyl)methyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B21): N-[4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl]-1-(2-brombenzyl)methyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B22): N-[4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl]-1-(2-brombenzyl)methyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B23): N-[5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl]-1-(2-brombenzyl)methyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B24): N-[5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl]-1-(2-brombenzyl)methyl-5-methyl-1H-[1,2,3]triazol-4-ylcarbamid

(B25): N-[2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl]-1-(2-brombenzyl)methyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B26): N-[2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl]-1-(2-brombenzyl)methyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B27): N-[3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl]-1-(2-brombenzyl)methyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B28): N-[3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl]-1-(2-brombenzyl)methyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B29): N-[4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl]-1-(2-brombenzyl)methyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid

(B30): N-[4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl]-1-(2-brombenzyl)methyl-5-propyl-1H-[1,2,3]triazol-4-ylcarbamid
Verbindungen der Formeln I und II wie definiert, sind als Arzneimittel geeignet. Die erfindungsgemäßen Verbindungen umfassen affine oder sogar hochaffine Liganden für α1-Rezeptoren sowie für D2- und/oder D3-Rezeptoren.

Der Begriff „adrerger“ bedeutet in dieser Beschreibung und in den Ansprüchen dieser Erfindung „die Adrenorezeptoren betreffend“ und bezieht dabei ausdrücklich alle Klassen der Adrenorezeptoren mit ein, insbesondere α1-, α2-, β1-, β2- und β3-Adrenozeptoren, sowie deren Subtypen wie zum Beispiel α1A, α1B und α1D. Des weiteren beschreibt der Begriff „adrerger“ die physiologischen Eigenschaften, die durch die Neurotransmitter Adrenalin und/oder Noradrenalin verursacht werden. Wird der Begriff „adrerger“ verwendet, so dabei nicht zu verstehen, dass „nur die Wirkung des Adrenalins betreffend“ umschrieben werden soll.

Anstelle einer hochselektiven α1-Rezeptorbindung oder einer selektiven Dopamin D2- oder D3-Re-
zeptorbindung kann je nach Art der zu behandelnden Erkrankung auch eine kombinierte Bindung an diesen Rezeptoren oder aber auch eine Bindung an einen weiteren Rezeptor gewünscht sein.

[0050] Beispielsweise kann zur Behandlung der Schizophrenie eine Verbindung attraktiv sein, die ein hochaffiner D3-Ligand und gleichzeitig ein affiner oder sogar hochaffiner α1-Rezeptorligand ist. In einer anderen Ausführungsform der Erfindung kann zur Behandlung der erkrankten Dysfunktion eine Verbindung gewünscht sein, die neben Dopaminrezeptoraktivierenden Eigenschaften auch α1-antagonistische Eigenschaften aufweist.

[0051] Die vorliegende Erfindung erlaubt daher in exzellenter Weise eine Feineinstellung der gewünschten Affinität, Aktivität und Selektivität bezüglich verschiedener pharmakologisch bedeutsamer Rezeptoren insbesondere der α1-Rezeptoren und der Dopamin D3-Rezeptoren, aber auch beispielsweise bezüglich des D2-Rezeptors.

[0052] Ein weiterer Gegenstand der Erfindung ist daher ein Arzneimittel, das eine oder mehrere der Verbindungen der allgemeinen Formeln I und II oder eine der konkreten aufgeführten Verbindungen wie oben definiert, gegebenenfalls in Form eines pharmazeutisch akzeptablen Salzes sowie eines pharmazeutisch akzeptablen Hilfsmittels enthält.

[0053] Die Erfindung betrifft auch die Verwendung einer oder mehrerer der Verbindungen der allgemeinen Formeln I und II oder einer der konkreten aufgeführten Verbindungen, gegebenenfalls in Form eines pharmazeutisch akzeptablen Salzes, zur Behandlung, der hier genannten Indikationen sowie zur Herstellung eines Arzneimittels für die hier genannten Indikationen.

[0054] Bevorzugt werden zur Herstellung von Arzneimitteln solche erfindungsgemäßen Verbindungen ausgewählt, die hochaffine α1-Liganden sind.

[0055] In einer anderen Ausführungsform der Erfindung werden Verbindungen ausgewählt, die affin oder sogar hochaffin für den D2-Rezeptor und den D3-Rezeptor sind.

[0062] Weiterhin sind Erkrankungen, in deren Pathogenese dopaminerge und/oder adrenerge Prozesse in-

[0063] Der Begriff „ZNS-Erkrankungen" umfasst in dieser Patentanmeldung sowohl Störungen, die ihren Ursprung im ZNS haben und deren Symptome sich überwiegend oder ausschließlich im ZNS bemerkbar machen, wie z.B. Psychosen, Depressionen oder kognitive Störungen, als auch Erkrankungen, die ihren Ursprung im ZNS haben, deren Symptome sich aber zumindestens zum Teil in anderen Zielorganen bemerkbar machen, wie z.B. extrapyramidal-motorische Bewegungsstörungen oder Hyperprolaktinämie.

[0064] Beispiele für ZNS-Erkrankungen, die mit den erfindungsgemäßen Verbindungen behandelt werden können, sind

1. Psychosen und Angststörungen, inklusive Manien, idiopathischen Psychosen, Schizophrenie, Zwangsstörungen, Panikattacken, Phobien, Essstörungen, aggressive und autoaggressive Störungen, Stereotypien und andere Persönlichkeitsstörungen
2. Drogenabhängigkeit, z.B. Kokain-, Alkohol-, Opium- und Nikotinsucht;
5. Hyperprolaktinämie; Hyperprolaktinom sowie bei Medikamenten-unterstütztem Abstellen nach Schwanerschaften
6. Glaukoma
7. Hyperaktivitätssyndrom (ADHS);
8. Posttraumatisch Stresssymptome mit Alträumen und Schlaufstörungen

[0065] Schließlich können die erfindungsgemäßen Arzneimittel in Abhängigkeit von der zu behandelnden Erkrankung auch als Kombinationspräparat zur gleichzeitigen oder sequentiellen Gabe ausgebildet sein.

[0067] Üblicherweise bestehen die erfindungsgemäßen Arzneimittel aus einer pharmazeutischen Zusammensetzung, die neben den erfindungsgemäßen Verbindungen, wie oben beschrieben, mindestens einen pharmazeutisch annehmbaren Träger oder Hilfsstoff enthält.

[0068] Dem Fachmann ist klar, dass die pharmazeutische Formulierung in Abhängigkeit vom beabsichtigten Applikationsweg unterschiedlich ausgestaltet sein kann. So kann die pharmazeutische Formulierung beispielsweise zur intravenösen, intramuskulären, intrakutanen, subkutanen, oralen, bukkalen, sublingualen, nasalen, transdermalen, inhalativen, rektalen oder intraperitonealen Verabreichung angepasst sein.

[0070] In einer bevorzugten Ausführungsform der Erfindung werden die pharmazeutischen Zusammensetzungen, die die erfindungsgemäßen Verbindungen enthalten, oral verabreicht und können beispielsweise als Kapsel, Tablette, Pulver, Granulat, Dragee oder in flüssiger Form vorliegen.

IST dagegen eine protrahierte Freisetzung erwünscht, bietet sich eine Formulierung mit retardierter Wirkstofffreisetzung an. Entsprechende orale Formulierungen sind ebenfalls aus dem Stand der Technik bekannt.

Alternative pharmazeutische Zubereitungen können beispielsweise Infusions- oder Injektionslösungen, Öle, Suppositorien, Aerosole, Sprays, Pflaster, Mikrokapseln oder Mikropartikel sein.

Eine erfindungsgemäße Verbindung nach den Formeln I und II kann hergestellt werden durch Umsetzung einer Aminkomponente A
mit einer Carbonsäure der allgemeinen Formel C

\[
W \quad \text{mit einer Carbonsäure der allgemeinen Formel C.}
\]

wobei gilt:

\[
W \text{ ist ausgewählt aus OH, Cl, Br oder einer Gruppe.}
\]

\[
\begin{align*}
\text{X} & \rightarrow \text{O} \\
\text{O} & \rightarrow \text{X}
\end{align*}
\]

in der X für Alkyl steht;

und einem Azid der allgemeinen Struktur D

\[
\begin{align*}
\text{R12} & \quad \text{R13} \\
\text{R11} & \quad \text{R10} \\
\text{R9} & \quad \text{R8} \\
\end{align*}
\]

(sowie weitere mesomere Grenzformen des Azids)

wobei R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 und R13 sowie n jeweils die Bedeutung haben, wie vorstehend und in den Ansprüchen definiert, und wobei für den Fall, dass der Substituent W eine Hydroxygruppe ist, die entsprechende Säuregruppe vor der Umsetzung mit der freien Base der allgemeinen Formel C durch Zugabe von Aktivierungsreagenzien, wie z.B. Diisopropylcarbodiimid, Hydroxybenzotriazol, Hydroxyazabenzotriazol, HATU oder TBTU aktiviert wird.

[0077] W ist bevorzugt Chlor, Brom oder OH und besonders bevorzugt Chlor oder OH.

[0078] Ein wichtiger Aspekt bei der Synthese der erfindungsgemäßen Verbindungen der Formeln I und II ist die regioselective Cyclisierungsreaktion der Alkinsäurekomponente mit dem Azidderivat zu einem 1-Benzyl-4-carbamoylsubstituierten 1,2,3-Triazolderivat, was durch Einsatz einer geeigneten festphasenunterstützten Synthesestrategie möglich ist. Dafür notwendig ist der Einsatz eines Polystyrolharzes, das mit einem Formyl-Aryloxy-Methyl-Triazol der Struktur E funktionalisiert ist (=FAMT-Harz) (Löber, S., et al. Org. Lett. 2003, 5,
Als Startreaktion der Synthese der erfindungsgemäßen Verbindungen der Formeln I und II erfolgt die reductive Aminierung der entsprechenden Aminkomponente von Typ A mit der Formylgruppe des Linkers E.

Ausführungsbeispiel

SYNTHESE DER AMINKOMPONENTEN:

Herstellung von Aminkomponenten des Typs A1:

2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethylamin, 2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethylamin

Für die Herstellung der Arylpiperazinelyethylamine vom Typ A1 können z.B. käuflich zugängliche 2-Methoxy- bzw. 2,3-Dichlorphenylpiperazine mit Bromethylphthalimid in XyloI alkyliert werden. Anschließende Hydrazinolyse der phthalimidsubstituierten Strukturen liefert die primären Amine vom Typ A1. Dies wird anhand des folgenden Reaktionsschemas exemplarisch für 2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethylamin verdeutlicht:

\[
\begin{align*}
\text{O} & \quad \text{Br} \\
\text{N} & \quad \text{R} \\
\] + \\
\text{H} & \quad \text{N} \\
\text{N} & \quad \text{R} \\
\text{R} & \quad \text{R} \\
\text{XyloI} & \quad \rightarrow \\
\text{N}_2\text{H}_2 & \quad \rightarrow \\
\text{H}_2\text{N} & \quad \text{N} \\
\text{O} & \quad \text{R} \\
\text{N} & \quad \text{R} \\
\end{align*}
\]

(A1)

mit R2, R3 = Cl; R4, R5, R6 = H

3,6 g (16 mmol) 2,3-Dichlorphenylpiperazin (Base) werden in 50 ml XyloI gelöst und auf 70°C erhitzt. Dann werden 2,0 g (8 mmol) 2-Bromethylphthalimid (gelöst in 20 ml XyloI) zugetropt und das Reaktionsgemisch für 24 Stunden bei 125°C erhitzt. Nach Abkühlen der Mischung auf 0°C wird abfiltriert und das Filtrat evaporiert. Das entstandene N-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)phthalimid wird durch Flashchromatographie an SiO\(_2\) mit Ethylacetat gereinigt.

Ausbeute: 2,0 g (63%).
[0081] Zu einer Suspension von 2.0 g N-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)phthalimid in 30 ml Ethanol wird eine Lösung von 0.45 ml 80\%igem Hydrazinhydrat (2.5 eq) in 5 ml Ethanol zugetropft. Die Mischung wird für 18 Stunden unter Rückfluss erhitzt, anschließend auf Raumtemperatur abgekühlt, der dabei ausfallende Feststoff abfiltriert, und die ethanolierte Lösung im Vakuum abgedampft. Reinigung mit Flashchromatographie (CH$_2$Cl$_2$-MeOH-Me$_2$EtN:90:8-2) liefert die freie Base 2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethylamin.

Ausbeute: 1.3 g (96\%).

MS: m/z 274 (M$^+$), 276 ((M+2)$^+$); IR: (NaCl): 3423, 2941, 2821, 1638, 1576, 1448, 1240, 960, 779 \,1H NMR (CDCl$_3$, 360 MHz) δ (ppm): 2.05 (bs, NH$_2$), 2.53 (t, J=5.4 Hz, 2H, CH$_2$N), 2.65 (m, 4H, pip); 2.85 (t, J=6.4 Hz, 2H, H$_2$N-CH$_2$), 3.07 (m, 4H, pip); 6.94-6.97 (dd, J=3.6 Hz, 5.4 Hz, 1H, Phenyl H-6); 7.11-7.17 (m, 2H, Phenyl H-4, Phenyl H-5).

Herstellung der Amine vom Typ A2:

3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propylamin, 3-(4-(2-Methoxyphenyl)piperazin-1-yl)propylamin,
4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butylamin, 4-(4-(2-Methoxyphenyl)piperazin-1-yl)butylamin,
5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentylamin, 5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentylamin

[0082] Ein alternativer Syntheseweg zur Gewinnung verschiedener substituierter Phenylpiperazinylalkylamine vom Typ A2 stellt die Reaktion des Piperazins mit einem Cyanoaalkylhalogenid entsprechender Kettengabe dar, wie es exemplarisch im folgenden Reaktionsschemas für 3-(4-(2-Methoxyphenyl)piperazin-1-yl)propylamin verdeutlicht wird:

\[
\begin{align*}
\text{N} & \quad \text{Br} \\
\text{H} & \quad \text{N}^+ \\
\text{H} & \quad \text{C} \\
R2 & \quad \text{R3} \\
R4 & \quad \text{R5} \\
\end{align*}
\]

1. K$_2$CO$_3$
2. LiAlH$_4$

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{N} \\
R6 & \quad \text{R5} \\
R2 & \quad \text{R3} \\
\end{align*}
\]

mit n = 1; R2 = OCH$_3$;
R3, R4, R5, R6 = H

[0083] So werden 2.28 g (10 mmol) 4-(2-Methoxyphenyl)piperazinhydrochlorid, 2.68 g (20 mmol) 3-Brompropionitril und 3.0 g (22 mmol) K$_2$CO$_3$ in 50 ml Acetonitril gelöst, für 15 Stunden unter Rückfluss erhitzt, anschließend auf Raumtemperatur abgekühlt und die Lösung im Vakuum abgedampft.

Ausbeute: 2.14 g (87\%).

MS: m/z 245 (M$^+$). IR: (NaCl) cm$^{-1}$: 2940, 2820, 2246, 1500, 1450, 1240, 1140, 1025, 750. \,1H NMR (CDCl$_3$, 360 MHz) δ (ppm): 2.53-2.58 (m, 2H, NC$_2$H$_4$); 2.69-2.74 (m, 4H, pip); 2.75-2.81(m, 2H, CH$_2$N); 3.05-3.15 (m, 4H, pip); 3.86 (s, 3H, OCH$_3$); 6.85-6.88 (m, 1H, Phenyl H-3); 6.93 (m, 2H, Phenyl H-5, Phenyl H-6); 6.99-7.04 (m, 1H, Phenyl H-4). Anschließend werden 2.14 g 3-(4-(2-Methoxyphenyl)piperazin-1-yl)propionitril (8.9 mmol) in 10 ml trockenem Diethylether gelöst und auf -5°C gekühlt. Dann werden langsam 18 ml LiAlH$_4$-Lösung (1M in Diethylether, 18 mmol) zugetroffen und 1 Stunde bei Raumtemperatur gerührt. Nach erneutem Abkühlen auf 0$^\circ$C wird mit gesättigter NaHCO$_3$-Lösung versetzt, durch eine Glasfritte mit Celite/MgSO$_4$/Celte filtriert und mit Methylchlorid gewaschen und über Na$_2$SO$_4$ getrocknet. Das entstandene 3-(4-(2-Methoxyphenyl)piperazin-1-yl)propylamin wird durch Flashchromatographie an SiO$_2$ mit (CH$_2$Cl$_2$-MeOH-Et$_3$N:90:8-2) gereinigt.

Ausbeute: 1.36 g (64\%).

MS: m/z 248 (M$^+$) IR: (NaCl) cm$^{-1}$: 3363, 2939, 2878, 2815, 1592, 1500, 1451, 1303, 1240, 1027, 748. \,1H NMR (CDCl$_3$, 360 MHz) δ (ppm): 1.52 (bs, NH$_2$); 1.64-1.73 (m, H, CH$_3$); 2.45-2.50 (m, 2H, H$_2$N-CH$_2$); 2.62-2.69 (m, 4H, pip); 2.75-2.80 (m, 2H, CH$_2$N); 3.05-3.15 (m, 4H, pip); 3.80 (s, 3H, OCH$_3$); 6.83-6.87 (m, 1H, Phenyl H-3); 6.89-7.01 (m, 3H, Phenyl H-4, Phenyl H-5, Phenyl H-6).

14/28
SYNTHESE DER AZIDKOMPONENTEN:

Herstellung der Azidderivate des Typs D:

Benzylazid, 2-Brombenzylazid, 4-Methoxybenzylazid

[0084] Die Herstellung der Azidkomponenten erfolgt durch Umsetzung der entsprechenden Halogenidvorstufen mit Natriumazid wie nachfolgend für 2-Brombenzylazid formuliert:

\[
\begin{align*}
\text{R12} & \quad \text{R13} & \text{Br} & + & \text{NaN}_3 & \rightarrow & \text{R12} & \quad \text{R13} & \quad \text{N=\text{N}}^+\text{N}^- \\
\text{R10} & \quad \text{R9} & & & & & \text{R10} & \quad \text{R9} & \\
\end{align*}
\]

mit \(R9 = \text{Br} \); \(R10, R11, R12, R13 = \text{H} \)

[0085] Dazu werden 10 g (40 mmol) 2-Brombenzylbromid in 150 ml DMSO gelöst, 8 g (120 mmol) \text{NaN}_3 zugegeben und anschließend die Lösung für 16 Std. bei Raumtemperatur gerührt. Die Lösung wird mit gesättigter \text{NaHCO}_3-Lösung versetzt, mit Ether extrahiert und über \text{Na}_2\text{SO}_4 getrocknet. Das Lösungsmittel wird im Vakuum abgedampft und man erhält 2-Brombenzylazid.

Ausbeute: 8,0 g (95%).

MS: m/z211 (M'), 213 ((M+2)'), IR: (\text{NaCl}) cm\(^{-1}\): 3059, 2937, 2101, 1441; 1285, 1257, 1028, 752.

Ausbeute: 10 g (97%).

MS: m/z 163 (M'), IR: (\text{NaCl}) cm\(^{-1}\): 2958, 2936, 2837, 2095, 1612, 1585, 1513, 1463, 1442, 1303, 1249, 1176,1033, 846, 814.

SYNTHESE DER BEISPIELVERBINDUNGEN DURCH ERSTELLUNG EINER SUBSTANZBIBLIOTHEK MIT FESTPHASENUNTERSTÜTZTER SYNTHESE:

den mit 1-Benzyl-4-carbamoyl-[1,2,3]-triazol-Grundstruktur synthetisiert werden:

\[\begin{align*}
\text{E} & = \\
\text{H} & \quad \text{H} \\
\end{align*} \]

Herstellung der polymergebundenen Verbindung E1 (Schritt 1):

Polymergebundenes ω-(4-Phenylpiperazin-1-yl)alkylamin

\[\text{(E)} + \text{(A)} \rightarrow \text{(E1)} \]

NaBH(OAc)$_3$

CH$_2$Cl$_2$

[0089] 0.100 g (1.1 mmol/g) FAMT-Harz (E), 4 äq NaBH(OAc)$_3$, und eine Lösung von 4 eq der Aminkomponente in 5 ml trockenem Methylenechlorid werden 24 Stunden bei Raumtemperatur in einem Teflon-Reaktionsgefäß (PLS Organic Synthesizer; Rotation: 450/min) geschüttelt. Danach wird das Harz abfiltriert und je 3× folgenden Waschschritten unterworfen: Methanol, Methylenechlorid und Ether. Das Harz wird nach dem letzten Waschvorgang im Zuge der Filtration getrocknet.

Herstellung der polymergebundenen Verbindung E2 (Schritt 2):

Polymergebundenes N-ω-(4-Phenylpiperazin-1-yl)alkyl)carbamid

\[\text{(E1)} + \text{(C)} \rightarrow \text{(E2)} \]

DIC

CH$_2$Cl$_2$

Herstellung der polymergebundenen Verbindung E3 (Schritt 3):

Polymergebundenes N-ω-(4-Phenylpiperazin-1-yl)alky)-1-benzy1-1H-[1,2,3]-triazol-4-y1carbamid

Das in Schritt 2 erhaltene Harz (E2) wird in 2 ml DMF suspendiert und 10 äq Benzylazid zugegeben. Der Reaktionsansatz wird 48 Stunden bei 150°C geschüttelt, danach wird abfiltriert und je 3x gewaschen mit DMF, Methanol, Methylvchlorid und Ether und das Harz in der Fritte getrocknet.

Abspaltung der polymergebundenen Zielverbindungen Beispiel 1-56 (Schritt 4):

N-ω-(4-Phenylpiperazin-1-yl)alky)-1-benzy1-1H-[1,2,3]-triazol-4-y1carbamid

Charakterisierung der festphasensynthetisierten Substanzen:

(0094) Die chromatographische Trennung wurde durchgeführt auf einer Zorbax SB-C18-Säule (4.6 mm ID x 250 mm, 5 µm) mit einem Fließmittelsystem MeOH/0.1 Naq.HCO,H im Gradienten von 50/50 auf 90/10 bei einer Flussrate von 0.5 ml/min. Die Detektion erfolgte mittels Agilent UV/VIS-Detektor bei 254 nm.

VERBINDUNGEN DER SUBSTANZBIBLIOTHEK:

(0095) Alle Verbindungen der Substanzbibliothek wurden wie oben besprochen analytisch charakterisiert und in einem biologischen Screeningverfahren untersucht. Die vielversprechendsten Testverbindungen wurden anschließend durch detaillierte Rezepturbedingungsversuche charakterisiert.

Beispiel 1:

N-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

Molekulargewicht (MG) (berechnet): 473,40; Masse (MS) (gefunden): 473,5 (M+1);
Retentionszeit (T_R in [min]): 4,3;
Ausbeute (mg, %): 4,6 mg, 12%; Reinheit (%): 96%.

Beispiel 2:

N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 434, 54; MS (gef): 435,2 (M+1); T_R: 2,8 min;
Ausbeute: 3,2 mg, 9%; Reinheit: 92%.

Beispiel 3:

N-(3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 487,43; MS (gef): 488,9 (M+1); T_R: 2,8-3,0 min;
Ausbeute: 9,8 mg, 25%; Reinheit: 94%.

Beispiel 4:

N-(3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 448,57; MS (gef): 449,2 (M+1); T_R: 2,8 min;
Ausbeute: 10,7 mg, 30%; Reinheit: 87%.

Beispiel 5:

N-(4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 501,46; MS (gef): 501,6 (M+1); T_R: 2,8 min;
Ausbeute: 16,1 mg, 40%; Reinheit: 97%.

Beispiel 6:

N-(4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 462,60; MS (gef): 463,3 (M+1); T_R: 2,8 min;
Ausbeute: 16,1 mg, 44%; Reinheit: 91%.
DE 10 2004 039 065 A1 2006.02.23

Beispiel 7:

N-(5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 515,49; MS (gef): 515,9 ; \(T_{R_a}\): 20,5 min;
Ausbeute: 26,1 mg, 63%; Reinheit: 90%.

Beispiel 8:

N-(5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 476,62; MS (gef): 477,3 (M+1); \(T_{R_a}\): 2,8-3,1 min;
Ausbeute: 22,2 mg, 58%; Reinheit: 100%.

Beispiel 9:

N-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)-1-benzyl-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 501,46; MS (gef): 501,8 ; \(T_{R_a}\): 20,2 min;
Ausbeute: 8,3 mg, 21 %; Reinheit: 96%.

Beispiel 10:

N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-1-benzyl-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 462,60; MS (gef): 463,3 (M+1); \(T_{R_a}\): 18,5min;
Ausbeute: 9,4 mg, 25%; Reinheit: 87%.

Beispiel 11:

N-(3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl)-1-benzyl-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 515,49; MS (gef): 516 (M+1); \(T_{R_a}\): 20,0 min;
Ausbeute: 10,9 mg, 26%; Reinheit: 90%.

Beispiel 12:

N-(3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl)-1-benzyl-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 476,62; MS (gef): 477,4 (M+1); \(T_{R_a}\): 18,4 min;
Ausbeute: 19,6 mg, 51 %; Reinheit: 86%.

Beispiel 13:

N-(4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl)-1-benzyl-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 529,51; MS (gef): 530 (M+1); \(T_{R_a}\): 20,0 min;
Ausbeute: 23,4 mg, 55%; Reinheit: 98%.

Beispiel 14:

N-(4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl)-1-benzyl-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 490,65; MS (gef): 491,5 (M+1); \(T_{R_a}\): 18,3 min;
Ausbeute: 20,8 mg, 53%; Reinheit: 86%.
Beispiel 15:

N-(5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl)-1-benzyl-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 543,54; MS (gef): 544,1 (M+1); T_r: 20,0 min;
Ausbeute: 24,5 mg, 56%; Reinheit: 98%.

Beispiel 16:

N-(5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl)-1-benzyl-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 504,68; MS (gef): 505,5 (M+1); T_r: 18,4 min;
Ausbeute: 19,4 mg, 48%; Reinheit: 95%.

Beispiel 17:

N-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)-1-(2-brombenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 552,30; MS (gef): 553,0 (M+1); T_r: 20,0 min;
Ausbeute: 11,8 mg, 27%; Reinheit: 100%.

Beispiel 18:

N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-1-(2-brombenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 513,44; MS (gef): 513,7; T_r: 18,1 min;
Ausbeute: 9,2 mg, 22%; Reinheit: 96%.

Beispiel 19:

N-(3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl)-1-(2-brombenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 566,33; MS (gef): 567,0 (M+1); T_r: 19,9 min;
Ausbeute: 20,8 mg, 46%; Reinheit: 80%.

Beispiel 20:

N-(3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl)-1-(2-brombenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 527,46; MS (gef): 527,9; T_r: 17,1 min;
Ausbeute: 15,1 mg, 36%; Reinheit: 97%.

Beispiel 21:

N-(4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl)-1-(2-brombenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 580,35; MS (gef): 581,0 (M+1); T_r: 19,5 min;
Ausbeute: 29,5 mg, 64%; Reinheit: 97%.

Beispiel 22:

N-(4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl)-1-(2-brombenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 541,49; MS (gef): 541,9; T_r: 18,1 min;
Ausbeute: 21,9 mg, 51%; Reinheit: 95%.
Beispiel 23:
N-(5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl)-1-(2-brombenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 594,38; MS (gef): 595,0 (M+1); T_{R}: 19,9 min;
Ausbeute: 29,5 mg, 62%; Reinheit: 99%.

Beispiel 24:
N-(5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl)-1-(2-brombenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 555,52; MS (gef): 555,9 (M+1); T_{R}: 17,1 min;
Ausbeute: 29,5 mg, 66%; Reinheit: 80%.

Beispiel 25:
N-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)-1-(2-brombenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 580,35; MS (gef): 581,0 (M+1); T_{R}: 20,9 min;
Ausbeute: 17,0 mg, 37%; Reinheit: 100%.

Beispiel 26:
N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-1-(2-brombenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 541,49; MS (gef): 542,2 (M+1); T_{R}: 19,5 min;
Ausbeute: 10,2 mg, 24%; Reinheit: 82%.

Beispiel 27:
N-(3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl)-1-(2-brombenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 594,38; MS (gef): 595,0 (M+1); T_{R}: 20,8 min;
Ausbeute: 28,5 mg, 60%; Reinheit: 81%.

Beispiel 28:
N-(3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl)-1-(2-brombenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 555,52; MS (gef): 556,0 (M+1); T_{R}: 19,6 min;
Ausbeute: 18,4 mg, 41%; Reinheit: 95%.

Beispiel 29:
N-(4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl)-1-(2-brombenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 608,41; MS (gef): 609,0 (M+1); T_{R}: 20,8 min;
Ausbeute: 15,3 mg, 31%; Reinheit: 97%.

Beispiel 30:
N-(4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl)-1-(2-brombenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 569,55; MS (gef): 570,5 (M+1); T_{R}: 19,5 min;
Ausbeute: 20,1 mg, 44%; Reinheit: 94%.

21/28
Beispiel 31:
N-(5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl)-1-(2-brombenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 622,44; MS (gef): 623,0 (M+1); T_R: 20,8 min; Ausbeute: 25,5 mg, 51%; Reinheit: 98%.

Beispiel 32:
N-(5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl)-1-(2-brombenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 583,57; MS (gef): 584,6 (M+1); T_R: 19,6 min; Ausbeute: 27,9 mg, 60%; Reinheit: 94%.

Beispiel 33:
N-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)-1-(4-methoxybenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 503,43; MS (gef): 503,9; T_R: 18,8 min; Ausbeute: 3,8 mg, 9%; Reinheit: 91%.

Beispiel 34:
N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-1-(4-methoxybenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 464,57; MS (gef): 465,2 (M+1); T_R: 16,0 min; Ausbeute: 5,1 mg, 14%; Reinheit: 91%.

Beispiel 35:
N-(3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl)-1-(4-methoxybenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 517,46; MS (gef): 518,0 (M+1); T_R: 19,0 min; Ausbeute: 10,3 mg, 25%; Reinheit: 96%.

Beispiel 36:
N-(3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl)-1-(4-methoxybenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 478,59; MS (gef): 479,4 (M+1); T_R: 16,9 min; Ausbeute: 10,6 mg, 28%; Reinheit: 93%.

Beispiel 37:
N-(4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl)-1-(4-methoxybenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 531,48; MS (gef): 532 (M+1); T_R: 19,2min; Ausbeute: 23,3 mg, 25%; Reinheit: 93%.

Beispiel 38:
N-(4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl)-1-(4-methoxybenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 492,62; MS (gef): 493,4 (M+1); T_R: 17,1 min; Ausbeute: 19,3 mg, 49%; Reinheit: 85%.
Beispiel 39:
N-(5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl)-1-(4-methoxybenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

[0098] MG (ber): 545,51; MS (gef): 546 (M+1); \(T_R \): 19,2 min;

[0099] Ausbeute: 22,7 mg, 52%; Reinheit: 94%.

Beispiel 40:
N-(5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl)-1-(4-methoxybenzyl)-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 506,65; MS (gef): 507,4 (M+1); \(T_R \): 17,1 min; Ausbeute: 31,0 mg, 69%; Reinheit: 93%.

Beispiel 41:
N-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)-1-(4-methoxybenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

[0100] MG (ber): 531,48; MS (gef): 531,8; \(T_R \): 2,8-3,1 min;

[0101] Ausbeute: 8,4 mg, 20%; Reinheit: 95%.

Beispiel 42:
N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-1-(4-methoxybenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 492,62; MS (gef): 493,1 (M+1); \(T_R \): 2,8-2,9 min; Ausbeute: 4,9 mg, 12%; Reinheit: 96%.

Beispiel 43:
N-(3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl)-1-(4-methoxybenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

[0102] MG (ber): 545,51; MS (gef): 545,9; \(T_R \): 2,8-3,1 min;

[0103] Ausbeute: 19,9 mg, 46%; Reinheit: 99%.

Beispiel 44:
N-(3-(4-(2-Methoxyphenyl)piperazin-1-yl)propyl)-1-(4-methoxybenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 506,65; MS (gef): 507,4 (M+1); \(T_R \): 19,9 min; Ausbeute: 9,3 mg, 23%; Reinheit: 93%.

Beispiel 45:
N-(4-(4-(2,3-Dichlorphenyl)piperazin-1-yl)butyl)-1-(4-methoxybenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid

MG (ber): 559,54; MS (gef): 560 (M+1); \(T_R \): 21 min; Ausbeute: 20,1 mg, 45%; Reinheit: 97%.
Beispiel 46:
N-(4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl)-1-(4-methoxybenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 520,68; MS (gef): 521,3 (M+1); T_{R}: 3,0-3,2 min;
Ausbeute: 19,2 mg, 46%; Reinheit: 98%.

Beispiel 47:
N-(5-(4-(2,3-Dichlorphenyl)piperazin-1-yl)pentyl)-1-(4-methoxybenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 573,57; MS (gef): 573,4; T_{R}: 2,9-3,2 min;
Ausbeute: 23,4 mg, 51%; Reinheit: 86%.

Beispiel 48:
N-(5-(4-(2-Methoxyphenyl)piperazin-1-yl)pentyl)-1-(4-methoxybenzyl)-5-propyl-1H-[1,2,3]-triazol-4-ylcarbamid
MG (ber): 534,70; MS (gef): 536 (M+1); T_{R}: 2,9-3,2 min;
Ausbeute: 21,9 mg, 51%; Reinheit: 94%.

BIOLOGISCHE AKTIVITÄT

[0108] Ausgeprägte Bindung am D2long-, D2short- und D4-Rezeptor mit Ki-Werten von 9.5 nM, 3.0 nM und 7.3 nM weist Beispiel 16 auf, das einen 2-Methoxyphenylpiperazinylpentylrest aufweist.
[0109] Bei vielen Verbindungen ist eine außergewöhnliche Affinität zum α1-Rezeptor zu beobachten, die in einem Bereich von 0.092 bis 5.5 nM gemessen wurde. Besonders ausgeprägt ist diese Eigenschaft, wenn die Aminkomponente der Testverbindungen in Position 2 des Phenylrestes einen Methoxy-substituenten trägt und einen Alkylspacer bestehend aus 4 oder 5 Kohlenstoffatomen aufweist, wie es für die Ausführungsbeispiele dieser Erfindung Beispiel 6, 8, 14, 16, 22, 24, 30, 32, 38, 40, 46 und 48 zutrifft.

[0110] Darüberhinaus zeigen einige dieser Verbindungen charakteristische Konzentrationswirkungskurven, die auf unterschiedliche Bindungsmodi der Liganden am Rezeptor hinweisen. Diese typische Diskriminierung zwischen einer "high-affinity binding site" und einer "low-affinity binding site" an einem G-Protein gekoppelten Rezeptor ist für Liganden mit agonistischer Wirkung bekannt. Sehr detaillierte Rezeptorbindungsuntersuchungen mit 16 verschiedenen Wirkstoffkonzentrationen ermöglichten die Feinanalyse dieser Kurvenverläufe und die Kalkulation von Bindungskonstanten für beide Rezeptorzustände. Dabei wurden für die Beispiele 8, 22, 24, 38 und 46 Ki-Werte für die hochaffine Bindungsstelle des α1-Rezeptors ermittelt, die im picomolaren Konzentrationsbereich liegen (0.056 bis 1.4 nM).

Patentansprüche

1. Verbindungen der allgemeinen Formel I,

\[
\begin{align*}
\text{R1 ist Wasserstoff, Alkyl, Phenyl oder Phenylalkyl;} \\
\text{n kann den Wert 1, 2, 3 oder 4 haben;} \\
\text{R2, R3, R4, R5 und R6 sind jeweils unabhängig voneinander ausgewählt aus der Gruppe Wasserstoff, Hydroxy, Alkyl, Alkoxy, Alkylthio, Alkenyl, Alkynyl, Phenyl, Phenoxy, Phenylalkyl, Halogen, Trifluormethyl, Alkylcarbonyl, Phenylcarbonyl, Phenylalkylcarbonyl, Alkoxy-carbonyl, Phenylalkoxy-carbonyl, Cyano, Nitro, Amino, Carboxy, Sulfо, Sulfamoyl, Sulfonylmino, Alkylaminosulfonyl und Alkylsulfonamino, wobei zwei benachbarte Reste R2, R3, R4, R5 und R6 gemeinsam mit den C-Atomen des Phenyrings an die sie gebunden sind, einen sauerstoffhaltigen 5-, 6- oder 7-gliedrigen Ring bilden können;}
\end{align*}
\]

\[
\text{R7 ist Wasserstoff, Alkyl oder Phenylalkyl;}
\]

\[
\text{R8 ist Wasserstoff oder Alkyl;}
\]

\[
\]

\[
\text{in Form der freien Base, deren physiologisch akzeptable Salze sowie möglicher Enantiomere und Diastereomere.}
\]

2. Verbindungen nach einem der vorhergehenden Ansprüche, worin R1 Methyl oder n-Propyl ist.

3. Verbindungen nach einem der vorhergehenden Ansprüche, worin R7 Wasserstoff ist.

4. Verbindungen nach einem der vorhergehenden Ansprüche, worin R8 Wasserstoff ist.

5. Verbindungen nach einem der vorhergehenden Ansprüche, wobei wenigstens einer der beiden Substituenten R9 und R11 ein Halogenatom oder eine Methoxygruppe darstellt.

6. Verbindung, ausgewählt aus

\[
\begin{align*}
\text{N=-(2-(4-(2,3-Dichlorphenyl)piperazin-1-yl)ethyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid} \\
\text{N=-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid} \\
\text{N=(3-(4-(2,3-Dichlorphenyl)piperazin-1-yl)propyl)-1-benzyl-5-methyl-1H-[1,2,3]-triazol-4-ylcarbamid}
\end{align*}
\]
7. Verbindungen gemäß einem der vorhergehenden Ansprüche als Arzneimittel.

9. Verwendung einer Verbindung nach einem der vorhergehenden Ansprüche zur Herstellung eines Arz-
neimittels zur Behandlung von Erkrankungen des Urinaltrakts.

15. Herstellung von Verbindungen nach einem der Ansprüche 1-14 durch Umsetzung einer Aminkomponente A

\[
\text{H}_2\text{N}-\left[\begin{array}{c}
R_2 \\
R_3 \\
R_4
\end{array}\right]_n - \text{N}-\left[\begin{array}{c}
R_6 \\
R_5
\end{array}\right] - \text{H}
\]

(A)

mit einer Carbonsäure der allgemeinen Formel C

\[
\text{R}_1 - \equiv - \text{W}
\]

(C)

wobei gilt:
W ist ausgewählt aus OH, Cl, Br oder einer Gruppe

\[
\text{X} - \equiv - \text{O}
\]

in der X für Alkyl steht;
und einem Azid der allgemeinen Struktur D
wobei R1, R2, R3, R4, R5, R6, R8, R9, R10, R11, R12 und R13 sowie n jeweils die Bedeutung haben, wie vorstehend und in der Beschreibung definiert, und wobei für den Fall, dass der Substituent W eine Hydroxygruppe ist, die entsprechende Säuregruppe vor der Umsetzung mit der freien Base der allgemeinen Formel C durch Zugabe von Aktivierungsreagenzien, wie z.B. Diisopropylcarbodiimid, Hydroxybenzotriazol, Hydroxyazabenzotriazol, HATU oder TBTU aktiviert wird.